Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Haemosporidians constitute a monophyletic group of vector-borne parasites that infect a wide range of vertebrate hosts, including Neotropical lizards. The remarkable diversity of these host-parasite associations and inadequate research on certain parasite groups have resulted in controversial haemosporidian taxonomy. Herein, we rediscover erythrocytic and non-erythrocytic haemosporidians infecting golden tegus (Tupinambis teguixin) from Brazil and Colombia. The erythrocyte-inhabiting parasite belongs toPlasmodiumsp., and the non-erythrocytic form was identified asSaurocytozoon tupinambi, previously attributed to the Family Leucocytozoidae. These non-pigmented haemosporidian parasites do not multiply in the blood. The relationships between theSaurocytozoonand Leucocytozoidae species were discussed for many years, especially during the 1970s. However, cytochrome b (cytb) sequences and the mitochondrial genomes recovered for this species strongly support classifying this parasite as aPlasmodiumtaxon. Therefore, we proposed a new combination for this parasite,Plasmodium(Saurocytozoon)tupinambicomb. nov., whereSaurocytozoonis retained as a subgenus due to its distinct morphology. These results reinforce that a broader definition of Plasmodiidae must include saurian parasites that develop non-pigmented leucocytozoid-like gametocytes.more » « lessFree, publicly-accessible full text available March 28, 2026
-
Plasmodium parasites infect thousands of species and provide an exceptional system for studying host- pathogen dynamics, especially for multi-host pathogens. However, understanding these interactions requires an accurate assay of infection. Assessing Plasmodium infections using microscopy on blood smears often misses infections with low parasitemias (the fractions of cells infected), and biases in malaria prevalence estimates will differ among hosts that differ in mean parasitemias. We examined Plasmodium relictum infection and parasitemia using both microscopy of blood smears and quantitative polymerase chain reaction (qPCR) on 299 samples from multiple bird species in Hawai’i and fit models to predict parasitemias from qPCR cycle threshold (Ct) values. We used these models to quantify the extent to which microscopy underestimated infection prevalence and to more accurately estimate infection pat- terns for each species for a large historical study done by microscopy. We found that most qPCR-positive wild-caught birds in Hawaii had low parasitemias (Ct scores 35), which were rarely detected by microscopy. The fraction of infections missed by microscopy differed substantially among eight species due to differences in species’ parasitemia levels. Infection prevalence was likely 4–5-fold higher than previous microscopy estimates for three introduced species, including Zosterops japonicus, Hawaii’s most abundant forest bird, which had low average parasitemias. In contrast, prevalence was likely only 1.5–2.3-fold higher than previous estimates for Himatione sanguinea and Chlorodrepanis virens, two native species with high average parasitemias. Our results indicate that relative patterns of infection among species differ substantially from those observed in previous microscopy studies, and that differences depend on variation in parasitemias among species. Although microscopy of blood smears is useful for estimating the frequency of different Plasmodium stages and host attributes, more sensitive quantitative methods, including qPCR, are needed to accurately estimate and compare infection prevalence among host species.more » « less
-
Abstract The distribution of avian haemosporidians of the genusLeucocytozoonin the Neotropics remains poorly understood. Recent studies confirmed their presence in the region using molecular techniques alone, but evidence for gametocytes and data on putative competent hosts forLeucocytozoonare still lacking outside highland areas. We combined morphological and molecular data to characterize a newLeucocytozoonspecies infecting a non-migratory red-legged seriema (Cariama cristata), the first report of a competent host forLeucocytozoonin Brazil.Leucocytozoon cariamaen. sp. is distinguished from theLeucocytozoon fringillinarumgroup by its microgametocytes that are not strongly appressed to the host cell nucleus. The bird studied was coinfected withHaemoproteus pulcher, and we present a Bayesian phylogenetic analysis based on nearly complete mitochondrial genomes of these 2 parasites.Leucocytozoon cariamaen. sp. morphology is consistent with our phylogenetic analysis indicating that it does not share a recent common ancestor with theL.fringillinarumgroup.Haemoproteus pulcherandHaemoproteus cathartiform a monophyletic group withHaemocystidiumparasites of Reptilia, supporting the polyphyly of the genusHaemoproteus. We also discussed the hypothesis thatH. pulcherandH. cathartimay be avianHaemocystidium, highlighting the need to study non-passerine parasites to untangle the systematics of Haemosporida.more » « less
-
Abstract Delimiting and describing Plasmodium species in reptiles remains a pressing problem in Haemosporida taxonomy. The few morphological characters used can overlap, and the significance of some life-history traits is not fully understood. Morphologically identical lizard Plasmodium forms have been reported infecting different cell types (red and white blood cells) in the same host and have been considered the same species. An example is Plasmodium tropiduri tropiduri , a species known to infect erythrocytes, thrombocytes and lymphocyte-like cells. Here, both forms of P. t. tropiduri were analysed using light microscope-based morphological characteristics and phylogenetic inferences based on almost complete mitochondrial genomes of parasites naturally infecting lizards in southeastern Brazil. Although morphologically similar, two distinct phylogenetic lineages infecting erythrocytes and non-erythrocytic cells were found. The lineage found in the erythrocytes forms a monophyletic group with species from Colombia. However, the non-erythrocytic lineage shares a recent common ancestor with Plasmodium leucocytica , which infects leucocytes in lizards from the Caribbean islands. Here, Plasmodium ouropretensis n. sp. is described as a species that infects thrombocytes and lymphocyte-like cells.more » « less
-
Abstract An infestation of cat fleas in a research center led to the detection of two genotypes ofCtenocephalides felisbiting humans in New Jersey, USA. The rarer flea genotype had an 83% incidence ofRickettsia asembonensis, a recently described bacterium closely related toR. felis,a known human pathogen. A metagenomics analysis developed in under a week recovered the entireR. asembonensisgenome at high coverage and matched it to identical or almost identical (> 99% similarity) strains reported worldwide. Our study exposes the potential of cat fleas as vectors of human pathogens in crowded northeastern U.S, cities and suburbs where free-ranging cats are abundant. Furthermore, it demonstrates the power of metagenomics to glean large amounts of comparative data regarding both emerging vectors and their pathogens.more » « less
-
Abstract AimMacroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers. LocationGlobal. Time period1994–2019. Major taxa studiedAvian haemosporidian parasites (generaPlasmodium,Haemoproteus,LeucocytozoonandParahaemoproteus). MethodsWe amalgamated infection data from 53,669 individual birds representing 2,445 species world‐wide. Spatio‐phylogenetic hierarchical Bayesian models were built to disentangle potential landscape, climatic and biotic drivers of infection probability while accounting for spatial context and avian host phylogenetic relationships. ResultsIdiosyncratic responses of the three most common haemosporidian genera to climate, habitat, host relatedness and host ecological traits indicated marked variation in host infection rates from local to global scales. Notably, host ecological drivers, such as migration distance forPlasmodiumandParahaemoproteus, exhibited predominantly varying or even opposite effects on infection rates across regions, whereas climatic effects on infection rates were more consistent across realms. Moreover, infections in some low‐prevalence realms were disproportionately concentrated in a few local hotspots, suggesting that regional‐scale variation in habitat and microclimate might influence transmission, in addition to global drivers. Main conclusionsOur hierarchical global analysis supports regional‐scale findings showing the synergistic effects of landscape, climate and host ecological traits on parasite transmission for a cosmopolitan and diverse group of avian parasites. Our results underscore the need to account for such interactions, in addition to possible variation in drivers across regions, to produce the robust inference required to predict changes in infection risk under future scenarios.more » « less
An official website of the United States government
